Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76739
Title: Differentiation and activation of human CD4 T cells is associated with a gradual loss of myelin and lymphocyte protein
Authors: Judith Leitner
Kodchakorn Mahasongkram
Philipp Schatzlmaier
Karin Pfisterer
Vladimir Leksa
Supansa Pata
Watchara Kasinrerk
Hannes Stockinger
Peter Steinberger
Authors: Judith Leitner
Kodchakorn Mahasongkram
Philipp Schatzlmaier
Karin Pfisterer
Vladimir Leksa
Supansa Pata
Watchara Kasinrerk
Hannes Stockinger
Peter Steinberger
Keywords: Immunology and Microbiology;Medicine
Issue Date: 1-Apr-2021
Abstract: Upon generation of monoclonal antibodies to the T cell antigen receptor/CD3 (TCR/CD3) complex, we isolated mAb MT3, whose reactivity correlates inversely with the production of IFN-γ by human peripheral blood T lymphocytes. Using eukaryotic expression cloning, we identified the MT3 antigen as myelin-and-lymphocyte (MAL) protein. Flow cytometry analysis demonstrates high surface expression of MAL on all naïve CD4+ T cells whereas MAL expression is diminished on central memory- and almost lost on effector memory T cells. MAL– T cells proliferate strongly in response to stimulation with CD3/CD28 antibodies, corroborating that MAL+ T cells are naïve and MAL– T cells memory subtypes. Further, resting MAL– T cells harbor a larger pool of Ser59- and Tyr394- double phosphorylated lymphocyte-specific kinase (Lck), which is rapidly increased upon in vitro restimulation. Previously, lack of MAL was reported to prevent transport of Lck, the key protein tyrosine kinase of TCR/CD3 signaling to the cell membrane, and to result in strongly impaired human T cell activation. Here, we show that knocking out MAL did not significantly affect Lck membrane localization and immune synapse recruitment, or transcriptional T cell activation. Collectively, our results indicate that loss of MAL is associated with activation-induced differentiation of human T cells but not with impaired membrane localization of Lck or TCR signaling capacity.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099772229&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/76739
ISSN: 15214141
00142980
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.